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A Causal assumptions

With single mediator, in order to estimate the causal effects from observed data, the following

assumptions are imposed.

Assumption 1 The stable unit treatment value assumption (SUTVA).

Assumption 2 The structural models (1) and (2) are correctly specified.

Assumption 3 The observed outcome is one realization of the potential outcome with observed

treatment assignment.

Assumption 4 The treatment X is randomized with 0 < P(X = x) < 1, i.e.,

{Y (x′,m),M(x)} |= X.

Assumption 5 The mediator is ignorable, i.e.,

Y (x′,m) |= M(x) | X = x.

The SUTVA definition was introduced by Rubin (1986), which contains two parts of assumptions:

i) there is no multiple versions of treatment; ii) and there is “no interference” in the sense that the
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treatment of one subject/trial has no impact on the outcome of other subjects/trials. Assumption

2 assumes the proposed structural equation models are correctly specified, that is assuming there

is no interaction between the treatment and the mediation effect (Assumption 2 in Imai et al.

(2010)). Assumption 3 is also known as the “consistency” assumption (Cole and Frangakis, 2009).

Assumptions 4 and 5 together is the sequential ignorability assumption in causal mediation anal-

ysis (Imai et al., 2010). These two assumptions assume there is i) no unmeasured confounding of

treatment-outcome relationship, ii) no unmeasured confounding of mediator-outcome relationship,

and iii) no unmeasured confounding of treatment-mediator relationship. For multiple mediators,

the ignorability of mediator assumption is extended to a sequential ignorability assumption, see

detailed discussion in Imai and Yamamoto (2013) for both the cases with causally independent and

dependent mediators.

B Theory and Proof

B.1 Proof of Proposition 1

Proof. Without loss of generality, we assume the data is center at zero and drop the intercept

term in models (5) and (6). The ordinary least square (OLS) estimator of the model coefficient in

model (5) is

α̂
(1)
j = (X>X)−1X>M̃(1j) = (X>X)−1X>Mφj ,

α̂
(2)
j = (X>X)−1X>M̃(2j) = (X>X)−1X>M(−φj) = −(X>X)−1X>Mφj ,

⇒ α̂
(1)
j = −α̂(2)

j .
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Assume τ2
1 = X>X, τ2

2 = M̃(1j)>M̃(1j) = φ>M>Mφj = M̃(2j)>M̃(2j), ρ = X>M̃(1j) = X>Mφj ,

then X>M̃(2j) = −ρ. The OLS estimator of βj and γj in model (6) areγ̂
(1)
j

β̂
(1)
j

 =
1

τ2
1 τ

2
2 − ρ2

τ2
2 X>Y − ρM̃(1j)>Y

τ2
1 M̃(1j)>Y − ρX>Y

 =
1

τ2
1 τ

2
2 − ρ2

τ2
2 X>Y −X>Mφjφ

>
j M>Y

τ2
1φ
>
j M>Y − φ>j M>XX>Y

 ,

andγ̂
(2)
j

β̂
(2)
j

 =
1

τ2
1 τ

2
2 − ρ2

τ2
2 X>Y + ρM̃(2j)>Y

τ2
1 M̃(2j)>Y + ρX>Y

 =
1

τ2
1 τ

2
2 − ρ2

 τ2
2 X>Y −X>Mφjφ

>
j M>Y

−τ2
1φ
>
j M>Y + φ>j M>XX>Y

 .

⇒ β̂(1j) = −β̂(2j), γ̂(1j) = γ̂(2j).

Therefore, the estimate of the indirect effect

ÎE
(1j)

= α̂(1j)β̂(1j) = α̂(2j)β̂(2j) = ÎE
(2j)

.

The estimate of the direct and indirect effects are sign invariant with respect to the loadings.

B.2 A Sketch of Asymptotic Properties of the Estimators in Algorithm 1

We propose a sparse principal component mediation analysis approach to enable intuitive inter-

pretations. The sparsification and dependence removal procedures modify the mediator PCs, and

thus change the estimate of the causal parameters. In this section, we provide a sketch of asymp-

totic convergence of the estimators obtained in Algorithm 1 and the estimators from the original

mediator PCs.

As the sparsified loadings are not orthogonal, in the algorithm, we include a linear dependence

removal procedure through the following regression model: for k = 1, . . . , q,

M̌
(k)
i = π0 + π1Xi + M̌

(1,...,k−1)>
i Π1,...,k−1 + τ

(k)
i = X>i πk + M̌

(1,...,k−1)>
i Π1,...,k−1 + τ

(k)
i .

Put it under the matrix form, and we have the solution for Π1,...,k−1 as

Π̂1,...,k−1 =
[
M̌(1,...,k−1)>(I−PX)M̌(1,...,k−1)

]−1
M̌(1,...,k−1)>(I−PX)M̌(k),

3



where PX = X(X>X)−1X> is the projection matrix of X. The new mediator is

M̌(k·1,...,k−1) = M̌(k) − M̌(1,...,k−1)Π̂1,...,k−1 = (I−QM̌(1,...,k−1))M̌(k),

where

QM̌(1,...,k−1) = M̌(1,...,k−1)
[
M̌(1,...,k−1)>(I−PX)M̌(1,...,k−1)

]−1
M̌(1,...,k−1)>(I−PX).

Let âk and âk·1,...,k−1 denote the estimated coefficient in model (5) with M̌(k) and M̌(k·1,...,k−1) as

the dependent variable, respectively. We first consider the case when k = 2. Then

â2 = (X>X)−1X>M̌(2),

â2·1 = (X>X)−1X>M̌(2·1) = (X>X)−1X>(I−QM̌(1))M̌(2),

⇒

â2 − â2·1 = (X>X)−1X>M̌(2) − (X>X)−1X>(I−QM̌(1))M̌(2)

= (X>X)−1X>QM̌(1)M̌(2)

= (X>X)−1X>M̌(1)
[
M̌(1)>(I−PX)M̌(1)

]−1
M̌(1)>(I−PX)M̌(2).

After sparsifying the loadings, M̌(1) and M̌(2) are not conditionally independent given X. But for

k 6= j, the original PC mediators M̃(k) = Mv̂k and M̃(j) = Mv̂j are. Therefore,

M̃(1)>(I−PX)M̃(2) =
[
(I−PX)M̃(1)

]> [
(I−PX)M̃(2)

]
= Op

(√
1

n

)
.

We sparsify the loadings through an `1-type regularization. Considering lasso penalty, Chatter-

jee (2013) showed that when the design matrix and the true coefficient parameters are bounded,

the expected mean squared prediction error converges to zero at the rate of
√

log p/n. Under our

problem setting, this is saying

E
(

M̂SPE(ŵk)
)

= Op

(√
log(p)

n

)
,
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where M̂SPE(ŵk) = ‖Ev̂k −Eŵk‖22. Assuming
∑n

i=1X
2
i /n→ const <∞,

E
(
‖Mv̂k −Mŵk‖22

)
= Op

(√
log(p)

n

)
.

Therefore,

E(‖â2 − â2·1‖22) = Op

(√
log(p)

n

)
.

Let α̂k denote the estimated coefficient in model (5) with M̃(k) as the dependent variable.

E(‖α̂2 − â2‖22) = E(‖(X>X)−1X>M̃(2) − (X>X)−1X>M̌(2)‖22)

= E(‖(X>X)−1X>Mv̂2 − (X>X)−1X>Mŵ2‖22)

= Op

(√
log(p)

n

)
.

Therefore,

E(‖â2·1 − α̂2‖22) ≤ E(‖â2·1 − â2‖) + E(‖â2 − α̂2‖) = Op

(√
log(p)

n

)
.

For model (6),

β̂2 = [M̃(2)>(I−PX)M̃(2)]−1M̃(2)>(I−PX)Y,

b̂2 = [M̌(2)>(I−PX)M̌(2)]−1M̌(2)>(I−PX)Y,

b̂2·1 = [M̌(2·1)>(I−PX)M̌(2·1)]−1M̌(2·1)>(I−PX)Y

= [M̌(2)>(I−Q>
M̌(1))(I−PX)(I−QM̌(1))M̌(2)]−1M̌(2)>(I−Q>

M̌(1))(I−PX)Y.

First, using the results from above,

E(‖β̂2 − b̂2‖22) = Op

(√
log(p)

n

)
.

Taking a similar strategy, we can also have that

E(‖b̂2 − b̂2·1‖22) = Op

(√
log(p)

n

)
,
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and thus

E(‖β̂2 − b̂2·1‖22) = Op

(√
log(p)

n

)
.

Therefore, for the indirect effect

E(‖α̂2β̂2 − â2·1b̂2·1‖22) = Op

(√
log(p)

n

)
,

where α̂2 and â2·1 are the second element of α̂2 and â2·1, respectively. For higher order PCs, the

same conclusion follows. The convergence of these estimators are examined through simulation

study presented in Section D.

C Additional fMRI Study Results

Figure C.1 shows the estimate of model coefficient and the indirect effect (IE) of the first 18 PCs

in both the PCA and sparse PCA (SPCA) based mediation analysis. From the figure, only PC3

yields significant positive mediation effect with significant negative α and β estimates.

Figure C.2 shows the loadings of PC3. From the figure, we do not observe any clear patterns

within each functional module. If following a thresholding step, several regions in the visual cortex

would remain with a positive loading. The estimate of α for PC3 is negative indicating that these

visual regions are deactivated in the classification task compared to the baseline. Further, the

activation of these visual areas will shorten the reaction time as the estimate β is negative. These

conclusions depart from existing findings in visual cortex when related to sensory processing and

motor response (Poldrack et al., 2001; Aron et al., 2004; Yarkoni et al., 2009).

Figure C.3 presents the river plot of the sparse loadings of PC3. The downstream is separated

for positive and negative loadings. From the figure, the visual regions (lateral, medial and occipital

pole) yield negative loadings; and the positive loadings are contributed mainly by auditory, default

mode network (DMN), executive control (EC), and frontoparietal cortex. The whole cerebellum
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(a) α estimate in PCA analysis.
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(b) β estimate in PCA analysis.
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(c) IE estimate in PCA analysis.
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(d) α estimate in SPCA analysis.
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(e) β estimate in SPCA analysis.
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(f) IE estimate in SPCA analysis.

Figure C.1: Estimate of model coefficients α and β, and the indirect effect (IE) in the (a)&(b)&(c)

PCA based and (d)&(e)&(f) sparse PCA (SPCA) based analysis of the first 18 PCs.
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module is penalized to zero.

Figure C.2: The loadings of PC3. The x-axis shows the index of the 264 brain regions which are

colored by functional modules.

Auditory

Cerebellum
DMN

EC

Frontoparietal L

Frontoparietal R

Lateral Visual

Medial Visual

Occipital Pole Visual

Sensorimotor

Uncertain

SPC3_POS

SPC3_NEG

Figure C.3: River plot of the sparse approximation of PC3. The downstream is divided into positive

(POS) and negative (NEG) loadings. DMN: default mode network, EC: executive control, L: left,

R: right.
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D Simulation Study

The simulated data is generated following models (5) and (6), and then the mediators are linearly

transformed back to the original space. In the simulation, p = 200. The orthogonal matrix Φ is

generated with sparse loadings, and the eigenvalues in Λ decay exponentially. The samples sizes

are set to be n = 50, 100, 500, 1000, 5000 to contain both cases where n > p and n < p. The

simulation is repeated 200 times. We compare the performance of (1) the PCA based mediation

analysis (PCA) and (2) the proposed sparse PC based mediation analysis (SPCA). The number

of PCs is chosen so that at least 75% of the data variation is explained. The sparse PC based

mediation analysis is performed following Algorithm 1.

Figure D.1 shows the estimate of model coefficients, as well as the indirect effect (IE) under

different values of n with p = 200. Since the estimates of α and β are sign nonidentifiable, we

compare the estimate of their absolute values. From the figure it is clear that, as the number of

observations increases, the estimate from both methods converge to the truth. The PCA approach

achieves lower bias in estimating |α| and |β|, while the difference between the two methods dimin-

ishes when estimating the indirect effect. The same conclusion can be drawn for the case with

p = 20 and p = 500 and sample size n = 50 (Figures D.3a and D.3d).

Figure D.2, as well as Figures D.3b–D.3c and D.3e–D.3f, presents the coverage probability (CP)

and the power of the indirect effect. The confidence intervals are obtained from 500 bootstrap

samples at the significance level of 0.95 following the procedure proposed in Section 3.4. From the

figures, the CP of those PCs with nonzero IE is slightly off, while the power increases to one as

n increases; for those PCs with zero IE, both the CP and the Type I error are well controlled at

the designated level. When comparing the PCA and SPCA approaches, no significant difference is

observed.
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(c) Estimate of IE under PCA.
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(d) Estimate of |α| under SPCA.
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(e) Estimate of |β| under SPCA.
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(f) Estimate of IE under SPCA.

Figure D.1: Estimate of |α|, |β| and the indirect effect (IE) over 200 replications under different

numbers of observations with p = 200. The gray dots are the true parameter values.
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(b) Power of IE under PCA.
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(c) CP of IE under SPCA.
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(d) Power of IE under SPCA.

Figure D.2: Coverage probability (CP) and power of the indirect effect (IE) over 200 replications

under different numbers of observations with p = 200, where the confidence interval is obtained

from 500 bootstrap samples at the significance level of 0.95. The gray dots indicate a PC with

nonzero IE effect.
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(a) Estimate of IE with p = 20.
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(b) CP of IE with p = 20.
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(c) Power of IE with p = 20.
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(d) Estimate of IE with p = 500.
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(e) CP of IE with p = 500.
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(f) Power of IE with p = 500.

Figure D.3: Estimate, coverage probability (CP) and power of the indirect effect (IE) over 200

replications with n = 50 and (a)–(c) p = 20 and (d)–(f) p = 500. The gray dots in (a) and (d) are

the true parameter values; and the gray dots in (b)–(c) and (e)–(f) indicate a PC with nonzero IE

effect.
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